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Low temperature magnetotransport coefficients of high-quality two-dimensional electron systems display anomalous features near 

filling factors v= 7/ I 1 and 9/ 13. These features show a non-activated temperature dependence and vanish upon tilting of the sample 

with respect to the magnetic field. 

In the “standard” Haldane-Halperin hierarchical 

scheme [ 1 ] of the fractional quantum Hall effect 

(FQHE) [2] the non-Laughlin (non v= l/m) [3] 

states occur at rational filling factors v=p/q when 

the fractionally charged quasiparticles of the “par- 

ent” state form a FQHE “daughter” state them- 

selves. In this picture the FQHE states may occur at 
all rational v in a sequence of hierarchies given by 
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where q is odd, si are even and (Y, = 0, ? 1. 

Recently, however, different hierarchical pictures 

have been proposed [4,5 1. The Yoshioka-Mac- 
Donald-Girvin scheme involves total spin S=O 

ground states and is currently developed for states 
v=q/p when q= 1 or 2, p=2,3,4,5... . Jain has ar- 

gued that the FQHE is a manifestation of the integer 

QHE (i = q) of electrons bound to an even number 
(2m) of flux quanta and, therefore, the hierarchies 

follow 
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v=q(2mq+ 1) ’ 
(2) 

a more restrictive set than that given by ( 1). It should 
be emphasized that both ( 1) and (2) describe only 

spin-polarized states. 
Here we report evidence for and a preliminary 

study of the FQHE states v= 7/l 1 and 9/l 3 [ 6 ] 
which may help to differentiate between various hi- 
erarchical schemes. 

Very low disorder samples employed in this study 
were cut from GaAs-AlGaAs heterostructures de- 
scribed previously [ 7 1, Typically, after a brief low- 
temperature illumination, the samples have electron 
concentration n= 5 x 10” cm-2 and mobility p= 
1.3 x lo6 cm2/V*s. Measurements were carried out 
in the van der Pauw configuration using the AC lock- 
in-phase technique (typically 4 Hz, 2 nA RMS 
excitation). 

Fig. 1 shows an overall low-field view of both pXX 
and pX,, at 19 mK of a sample from the M69 wafer. 
The pxx data displays two sharp dips on either side 
of the prominent v=2/3 FQHE dip, in addition to 
previously observed hierarchy states v= 5/7, 3/5, 
4/7 and 5/9. The pXy trace shows two corresponding 
anomalies, in addition the the QHE plateaus. The 
features near v = 9/ 13 and 7/ 11 have been observed 
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Fig. 1. The magnetotransport coeffkients versus magnetic field. Arrows give the expected positions for the filling factor v. 
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in many samples cut from several wafers, under dif- 
ferent conditions of illumination. They appear to be 
intrinsic and do not result from a spatial inhomo- 

geneity or other artifacts in the samples. 
The behavior of the features in pxx and pxY near 

v = 9 / 13 and 7/l 1 as a function of temperature is 
somewhat peculiar and puzzling. 

Fig. 2 gives the pxx versus B data at three higher 
temperatures. It is apparent that the strength of the 
dips near v = 9/ 13 and 7/ 11 does not show simple 
activated behavior. Moreover, the v=7/11 dip 
broadens and shifts to slightly lower magnetic field 
as T is raised, in contrast to the usual narrowing of 
the QHE pxx dips. Also, an additional shoulder near 
v=10/17 (on high-B side of FQHE at v=3/5) is 
quite apparent in these data. 

The behavior of the Hall resistance near v = 9/ 13 
and 7/ 11 is even less systematic. At about 300 mK 
deviations form the straight-line behavior become 
apparent. Upon the lowering of the temperature in- 
stead of developing QHE plateaus pxY grossly over- 
shoots the expected plateau positions, develops a 
minimum (which is not due to an pxx admixture) 
and then tends to form a plateau next to the neigh- 
boring lower v FQHE state (cf. fig. 1). Preliminary 
high-excitation-current measurements, however, 
show a weakening of the features near v= 9/ 13 and 
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Fig. 2. Diagonal magnetoresistance at higher temperatures. 
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7/l 1 analogous to that seen in the FQHE states of 
similar strength (e.g. v=5/7 and 4/7). 

Fig. 3 shows pXX data for tilted magnetic field. The 
features near v=9/13 and 7/l 1 completely disap- 
pear (as well as the FQHE at v=8/5 [8], 7/5 and 
4/3). The shoulder near v= lo/ 17, however, be- 
comes more prominent. This indicates that the states 
near v=9/13 and 7/I 1 are either total spin zero 
(spin-unpolarized) or mixed-spin states. 

In conclusion we should like to stress that at this 
time we cannot identify with certainty the features 

M73Bo -3 

570 

I I 

2 4 
BL iT) 

Fig. 3. Diagonal resistance of a tilted sample (19~57” )versus 
normal component of magnetic field [cost 57”) I-’ g 1.84. 

near v=9/13 and 7/l I as manifestations of devel- 
oping FQHE states at these filling factors. These fea- 
tures seem to differ in their behavior from other de- 
veloping FQHE states. On the other hand, it is 
possible that since the states at v = 9/ 13 and 7/ 11 
are, for the first time “falling” in between the states 
of a lower hierarchy, there is a considerable com- 
petition between the neighboring states. 
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